Abstract
Solar energy is available in abundance but least used energy source of available renewable energy resources. Solar Energy is being used for some household and commercial purposes like producing steam for commercial usage, heating of water to maintain the indoor temperature of houses etc. Water heating requires heat, which is produced usually with burning of fuels (Methane, Gasoline) and these fuels are costly and causes pollution at burning, but if we use solar energy which is available for almost 10-12 hours in almost every country, we can save a lot. This paper attempts to make the numerical simulation of flat plate solar collectors. Simulation is an important tool for the design and operation control. Design engineers use simulation results to design water heating systems; simulation makes it possible to find the optimal design and operating parameters. In this paper, the computational fluid dynamics (CFD) tools have been used to simulate solar collectors to better understand heat transfer capacity. Three-dimensional model of the U-tube collectors and flat absorber plate is obtained using solid works. The results obtained by the use of ANSYS FLUENT software. The purpose of this work is to better understand the relative computational fluid dynamics flow of the solar collector and the temperature distribution within solar collector. Outlet air temperature and solar radiation are compared and between them there is a good consistency. Our project is basically in our study design optimization, we can use our results to improve the efficiency of flat plate solar collector theory in the future. These results can also be used for design purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.