Abstract

Scour at bridge piers is one of the highest contributing failure factors of bridges. One way to minimize local scour is to alter the flow around a bridge pier and thereby reduce the strength of the downflow and horseshoe vortices. There are many flow-altering scour countermeasures including altering the geometry of the pier itself or by adding a plate or sheath to the base of the pier. Computational Fluid Dynamics (CFD) is a useful method to model and analyze the effects of pier configuration on flow velocity distribution profiles and bed shear stress. The hydrodynamic component of local scour at a circular pier is modeled by solving the Reynolds- Averaged Navier–Stokes (RANS) equations with k–ω and k-ε turbulence closure models. The realizable k-ε model most closely predicted the velocity components for a cylinder in steady flow obtained experimentally in literature. This model was then used to predict velocity distribution profiles and bed shear stress for a Reynolds number of 1.7 × 105 for the following circular pier attachments: tapered streamlined sheath, delta vane, guide wall with slanting plates, and angled plate footings. The reduction in simulated maximum bed shear stress compared to the circular pier was 30% for the delta vane and angled plate footings, 20% for the tapered streamlined sheath and 15% for the guide wall with slanting plates. The delta vane was then compared to the circular pier for a Reynolds number of 5.1 × 106. The reduction in maximum bed shear stress was 22%. By reducing bed shear stress, these pier configurations demonstrate the ability to alter the flow near the pier and reduce the scour potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.