Abstract

In general, the turbulent flow inside PWR (Pressurized Water Reactor) fuel assembly depends on the mixing vane configuration and the pattern of the mixing vane arrangement on the strap of the spacer grid. In this study, in order to examine the turbulent flow structure inside fuel assembly with the split-type mixing vanes, simulations were conducted with the commercial CFD (Computational Fluid Dynamics) software, ANSYS CFX R.14. Two different types of turbulence models, i.e. SAS (Scale-Adaptive Simulation)-SST (Shear Stress Transport) and DES (Detached Eddy Simulation), were used. The predicted results were compared with the measured data from the MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. Although there were locally differences between the prediction and the measurement, ANSYS CFX R.14 predicted the time averaged velocity field in the reliable level. The predicted horizontal and vertical velocity components were more in agreement with the measured data than the axial velocity component. There was no significant difference in the prediction accuracy of both turbulence models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.