Abstract

Abstract Computational fluid dynamics analysis of a building plan has been investigated with predominant wind velocity for different wind directions. The flow properties’ variation in the computational domain has been modeled by solving the Reynolds-Averaged Navier–Stokes (RANS) equations with the finite volume second-order discretization scheme. The turbulence of airflow distribution in and around the building has been modeled with the Shear Stress Transport (SST) k–ω turbulence model from the analysis of different turbulence models. Numerical results are analysed by evaluating and comparing the various flow properties at different building plan locations with different wind directions. The development of pressure coefficients, wind-driven driving force, and air change per hour are studied for different wind directions. From the analysis of numerical results, it is identified that better ventilation with sufficient airflow distribution has existed when the wind is coming from the west direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call