Abstract

The winnowing machine of chili pepper harvesters was developed to reduce the potential problem of low pepper stem and fruit separation. The developed winnowing machine was combined with two impellers and a center bearing to prevent a strain on the drive shaft and to ensure durability. The terminal velocity of chili pepper was measured, and an aerodynamic analysis was conducted based on this winnowing machine. A CFD (Computational Fluid Dynamics, Ansys Fluent 2020 R1) analysis was conducted for three levels of discharge port guide form (0, 3, and 5 guides) and three levels of rotating speed (1600, 1800, and 2000 RPM) of a winnowing machine designed utilizing aerodynamic analysis results. A validation test was conducted by fabricating a winnower test device. As for aerodynamic analysis conducted using measured values of terminal velocity, chili pepper fruits were collected at an outlet wind speed lower than 17.5 m/s and chili pepper branches were separated at a speed higher than 12.5 m/s. As a result of CFD analysis, the wind speed deviation at outlets of the 0-, 3-, and 5-guide depending on the rotating speed appeared to be 15.8, 1.4, and 1.0 m/s on average, respectively. The result of the CFD analysis showed values higher than wind speeds of the actual winnower test device by a minimum of 0 and a maximum of 2.4 m/s. Through the CFD analysis and the wind speed validation test of the winnower test device, optimal conditions to separate foreign materials were found to be a winnowing machine at a rotating speed of 1800 RPM with a discharge port having three guides or a winnowing machine at a rotating speed of 2000 RPM with a discharge port having five guides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.