Abstract
We introduce the concept CFA modules and their applications in investigation the coassociated primes of local homology modules. The main result of this paper says that if $M$ is a CFA linearly compact $R$-module and $t$ is a non-negative integer such that H i I ( M ) is CFA for all $i < t$, then R / I ⊗ R H t I ( M ) is CFA. Hence, the set $\mathrm{Coass}_R$ H t I ( M ) is finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.