Abstract

Accurate determination of polycyclic aromatic hydrocarbons (PAHs) in surface waters is necessary for protection of the environment from adverse effects that can occur at concentrations which require preconcentration to be detected. In this study, an effective solid phase extraction (SPE) method based on cetyltrimethylammonium bromide (CTAB)-coated Fe3O4 magnetic nanoparticles (MNPs) was developed for extraction of trace quantities of PAHs from natural waters. An enrichment factor of 800 was achieved within 5 min by use of 100 mg of Fe3O4 MNPs and 50 mg of CTAB. Compared with conventional liquid-liquid extraction (LLE), C18 SPE cartridge and some newly developed methods, the SPE to determine bioaccessible fraction was more convenient, efficient, time-saving, and cost-effective. To evaluate the performance of this novel sorbent, five natural samples including rainwater, river waters, wastewater, and tap water spiked with 15 PAHs were analyzed by use of ultraperformance, liquid chromatography (UPLC) with fluorescence detection (FLD). Limits of determination (LOD) of PAHs (log Kow ≥ 4.46) ranged from 0.4 to 10.3 ng/L, with mean recoveries of 87.95 ± 16.16, 85.92 ± 10.19, 82.89 ± 5.25, 78.90 ± 9.90, and 59.23 ± 3.10% for rainwater, upstream and downstream river water, wastewater, and tap water, respectively. However, the effect of dissolved organic matter (DOM) on recovery of PAHs varied among matrixes. Because of electrostatic adsorption and hydrophobicity, DOM promoted adsorption of Fe3O4 MNPs to PAHs from samples of water from the field. This result was different than the effect of DOM under laboratory conditions. Because of competitive adsorption with the site of action on the surface of Fe3O4 MNPs for CTAB, recoveries of PAHs were inversely proportional to concentrations of Ca(2+) and Mg(2+). This novel sorbent based on nanomaterials was effective at removing PAHs at environmentally relevant concentrations from waters containing relevant concentrations of both naturally occurring organic matter and hardness metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.