Abstract
A simple preparation of mesostructured cetyltrimethylammonium bromide (CTAB)–silica membrane is reported. It effectively desalinates seawater to pure water through pervaporation separation process. The membrane thickness was of nanometer-length-scale obtained by deposition of CTAB–silica colloids on porous polysulfone support. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) studies were performed to characterize the membrane while the structure of the colloids in coating solution was probed by small-angle neutron scattering (SANS). The prepared membranes exhibited excellent salt rejection efficiency of 99.9% in desalination of synthetic seawater of 40,000 ppm NaCl by pervaporation at 25∘C. The pure water flux was in the range of 1–2.6 kg m−2 h depending upon the membrane configuration and thickness. The flux could be greatly enhanced by operating the process at higher temperatures of 40–80∘C but it was at the cost of decreased salt-rejection efficiency. The initial rejection efficiency and flux of the membrane was found to be restored upon cooling the membrane back to room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.