Abstract

The research presented in this paper investigates the adsorption of cation surfactants--cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC)--onto magnetic nanoparticles and the application of this mixed hemimicelles solid-phase extraction (SPE) method for the preconcentration of several typical phenolic compounds-bisphenol A (BPA), 4-tertoctylphenol (4-OP), and 4-n-nonylphenol (4-NP)--from environmental water samples. In this novel SPE method, the charged surfactants CTAB and CPC form mixed hemimicelles on Fe3O4 nanoparticles (Fe3O4 NPs), which causes retention of analytes by strong hydrophobic and electrostatic interactions. The SPE method combines the advantages of mixed hemimicelles and magnetic nanoparticles. In order to provide guidelines forthe mixed hemimicelles SPE method development, surfactant adsorption isotherms and zeta-potential isotherms were also investigated. The main factors affecting the adsolubilization of analytes, such as the amount of Fe3O4 NPs and surfactants, the type of surfactants, the solution pH,the sample loading volume, and the desorption conditions, were investigated and optimized. A concentration factor of 800 was achieved by the extraction of 800 mL of several environmental water samples using this SPE method. Under the selected conditions, detection limits obtained for BPA, 4-OP, and 4-NP were 12, 29, 34 ng/L, respectively. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries (68-104%) with low relative standard deviations from 2 to 7% were achieved. The advantages of this new SPE method include high extraction yields, high breakthrough volumes, short analysis times, and easy preparation of sorbents. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used for the pretreatment of environmental water samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.