Abstract

A new sorbent cetylpyridinium bromide/polyvinylchloride (CPB/PVC) was prepared and tested to extract rare earth elements (REEs) from their chloride solutions. It was identified by FTIR, TGA, SEM, EDX, and XRD. The impact of various factors such as pH, RE ion initial concentration, contacting time, and dose amount via sorption process was inspected. The optimum pH was 6.0, and the equilibrium contact time was reached at 60 min at 25 °C. The prepared adsorbent (CPB/PVC) uptake capacity was 182.6 mg/g. The adsorption of RE ions onto the CPB/PVC sorbent was found to fit the Langmuir isotherm as well as pseudo-second-order models well. In addition, the thermodynamic parameters of RE ion sorption were found to be exothermic and spontaneous. The desorption of RE ions from the loaded CPB/PVC sorbent was investigated. It was observed that the optimum desorption was achieved at 1.0 M HCl for 60 min contact time at ambient room temperature and a 1:60 solid: liquid phase ratio (S:L). As a result, the prepared CPB/PVC sorbent was recognized as a competitor sorbent for REEs.

Highlights

  • The rare earth elements (REEs) are the lanthanides series, scandium, and yttrium, except for promethium, all of which occur in nature

  • The REE standard stock solution was prepared by dissolving a mixture of 0.2649 g of LaCl3, 0.3989 g of CeCl3·7H2O, 0.2632 g of PrCl3, 0.2606 g of NdCl3, 0.3639 g of SmCl3·6H2O, and 0.3294 g of YCl3 in 900 mL deionized water acidified by 15.0 mL concentrated HCl (36.5%) to prevent hydrolysis

  • The data quantified that the rare earth ions were sorbed on the polyvinyl chloride (PVC) surface

Read more

Summary

Introduction

The rare earth elements (REEs) are the lanthanides series, scandium, and yttrium, except for promethium, all of which occur in nature. The REEs are found fixed in their minerals and act as the same chemical entity [1]. Rare earth elements are not found as individual compounds, but the mineral usually contains all the REEs with some enrichment of them by the cerium group or yttrium group. Most REEs occur, in principle, only three ore minerals, namely, monazite, bastnasite (as a resource of the cerium group), and xenotime (as a source of the yttrium group) [2]. The recovery of REEs is a complicated process that involves ore mining, mineral dressing, chemical upgrading, and refining. The crucial refining steps must result in the possible extraction of the REEs existing in the ore with the lowest possible cost [3–6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.