Abstract

Aim: To develop and characterize doxorubicin-loaded sodium selenite nanoparticles (SSNP-DOX) and their surface attachment with cetuximab (mAb-SSNP-DOX).Methods: SSNP-DOX was formulated by gelation and then conjugated with cetuximab to form mAb-SSNP-DOX. Characterization included DLS, SEM, TEM, DSC, Raman spectroscopy and XRD. In vitro, the kinetics of doxorubicin release and cytotoxicity in MCF-7 breast cancer cells were investigated.Results: The zeta potential for SSNP-DOX and mAb-SSNP-DOX was -14.4±10.1mV and -27.5±7.28mV, with particle sizes of 181.3nm and 227.5nm, respectively. The formulation intensity was 89.7% for SSNP-DOX and 100% for mAb-SSNP-DOX, with PDI values of 0.419 and 0.251, respectively. SEM and TEM showed that mAb-SSNP-DOX was smooth and spherical. The DSC analysis revealed exothermic peaks at 102.44°C for SSNP-DOX and 144.21°C for mAb-SSNP-DOX, along with endothermic peaks at 269.19°C and 241.6°C, respectively. Raman spectroscopy showed a higher intensity for mAb-SSNP-DOX. The XRD study showed different peaks for each formulation. Both followed zero order kinetics for doxorubicin release. Cytotoxicity studies showed significant effects and high apoptosis in MCF-7 cells for both formulations.Conclusion: The mAb-SSNP-DOX showed promising properties, more effective doxorubicin release and higher cytotoxicity against breast cancer cells compared with SSNP-DOX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.