Abstract

In order to define the active domain for lipid binding in CETP (cholesteryl ester transfer protein), our study discusses some fundamental physicochemical properties of this molecule such as hydrophobic moment, protein active surface and helix amphipathicity, in comparison to the properties reported for a series of apoproteins including apoAI, apoAII, apoCI, CII, CIII and apoE. Our study suggests that CETP corresponds to a protein with an active surface slightly lower than the one calculated for the exchangeable apoproteins AI, AII, CI, CII, CIII and E. Arrays type (i, i + 3) and (i, i + 4) were found in the region associated to lipid binding in these apoproteins. Seven such arrays located in the amphipathic alpha-helices of CETP are also suggested to contribute to the overall lipid binding activity as a consequence of alpha-helix stability. It is proposed that for lipid binding to occur in both types of molecules, the possibility of a conformational specificity given by a redundant stereochemical code can be actively operating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.