Abstract

Mounting evidence shows the great promise of nanoparticle drug delivery systems (nano-DDSs) to improve delivery efficiency and reduce off-target adverse effects. By tracking drug delivery and distribution, monitoring nanoparticle degradation and drug release, aiding and optimizing treatment planning, and directing the design of more robust nano-DDSs, image guidance has become a vital component of nanomedicine. Recently, chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as an attempting imaging method for achieving image-guided drug delivery. One of the unbeatable advantages of CEST MRI is its ability to detect diamagnetic compounds that cannot be detected using conventional MRI methods, making a broad spectrum of bioorganic agents, natural compounds, even nano-carriers directly MRI detectable in a high-spatial-resolution manner. To date, CEST MRI has become a versatile and powerful imaging technology for non-invasive in vivo tracking of nanoparticles and their loaded drugs. In this review, we will provide a concise overview of different forms of recently developed, CEST MRI trackable nano-DDSs, including liposomes, polymeric nanoparticles, self-assembled drug-based nanoparticles, and carbon dots. The potential applications and future perspectives will also be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call