Abstract

The frayed edge site (FES) of micas, a partially weathered interlayer site, selectively adsorbs Cs radioisotopes. Despite extensive research on Cs+ adsorption, the interactive dynamics of FES elements remain unclear. This study employs experimental and computational methods to examine how interlayer cations at the FES affect Cs stability. We measured the solid–liquid distribution coefficients of Cs+ for partially expanded K- and Rb-fixed biotite using chemical extraction and adsorption methods. We evaluated the standard Gibbs free energy for the Cs exchange reaction between the FESs of K- and Rb-fixed muscovite models and bulk water, expanding the d001 spacing from collapsed to fully expanded conditions. Our results reveal that the interlayer cation significantly influences Cs+ affinity for FES, with the substitution of K+ with Rb+ largely reducing Cs+ stability. The computational approach further disclosed that the K+ to Rb+ replacement only at the wedge-shaped part of the FES contributed to the decrease in Cs+ stability whereas the replacement at other interlayer sites caused little impact. Our studies offer microscopic structural insights into FES, highlighting the critical role of the wedge-shaped part of FES in Cs+ stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.