Abstract

Motivated by the recent advances in perovskite-based solar cells, here we investigate stability, electronic properties and vibrational characteristics of lead-free perovskite, CsMnCl3, and its low dimensional forms by means of first-principles calculations. Structural optimizations reveal that, regardless of whether it is bulk or ultra-thin single layer cubic perovskite structure, CsMnCl3 crystal exhibit robust antiferromagnetism in its ground state due to oppositely aligned magnetic moments of Mn atoms. In addition to total energy calculations, phonon band dispersions indicate that CsMnCl3 structure sustains its dynamical stability down to its thinnest single layer crystal structures. The calculated Raman spectrums state that while the first-order Raman scattering is forbidden for bulk CsMnCl3 due to the cubic symmetry; dimensional-reduction-driven symmetry breaking leads to emergence of experimentally-observable distinctive Raman active modes in bilayer and single-layer crystal structures. Moreover, the electronic band dispersions reveal that from its bulk to ultra-thin single layer structures CsMnCl3 crystals are robust antiferromagnetic insulators. Multiple valid features like controllable dimensionality, robust antiferromagnetism and wide electronic band gap make cubic CsMnCl3 crystal as a potential candidate for nano-scale optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call