Abstract

Geopolymers are promising candidates for nuclear-waste immobilization, and more specifically for the immobilization of radioactive cesium. Low-Si metakaolin-based geopolymers cured at temperatures of 40 °C in the presence of Cs ions generate a mixture of amorphous and crystalline phases including a Cs-bearing zeolite F phase. Using a combination of 133Cs solid-state NMR and X-ray powder diffraction measurements we were able to show that Cs preferentially binds to zeolite F even when zeolite F is not the dominant phase in the matrix. Moreover, post-leaching NMR experiments indicate that zeolite F binds Cs more efficiently than the remaining crystalline or amorphous phases. Tailoring geopolymer formulations so that a large fraction of zeolite F is generated may therefore be a promising route for the production of immobilization matrices for cesium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call