Abstract

Single-crystal NMR was used to characterize the cesium-133 chemical shift and electric field gradient (EFG) tensors in CsCd(SCN)3. The principal axes of the two interaction tensors are not coincident, a reflection of the general positioning of cesium nuclei within the unit cell. Relative orientations of the chemical shift and EFG tensors have been determined, but assignment of the two magnetically distinct sites remains elusive. The span of the chemical shift, 94.4 ppm, is moderate in comparison with other cesium salts, and the magnitude of the nuclear quadrupole coupling constant, 148 kHz, is in the midrange of those reported for cesium compounds. Excellent agreement is observed between experimental 133Cs NMR spectra of a stationary powder sample and spectra calculated using NMR parameters from the single-crystal analysis. Moreover, simulations indicate that the static line shape is very sensitive to the relative orientation of the chemical shift and EFG tensors. Experimental 133Cs NMR spectra obtained w...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.