Abstract
As a distributed learning paradigm, federated learning can be effectively applied to the decentralized system since it can resolve the “data island” problem. However, it is also vulnerable to serious privacy breaches. Although existing secure aggregation technique can address privacy concerns, they also incur significant additional computation and communication costs. To address these challenges, this paper offers a Communication Efficient Secure Aggregation scheme. Firstly, the central server uses the communication delay between terminals as the weight of the fully terminal-connected graph to transform it into a sparse connected graph based on the minimal spanning tree. Secondly, instead of relying on central server for key advertisement, the terminals advertise keys via a neighboring terminal forwarding approach based on sparsely graph. Thirdly, we propose using the central server for auxiliary advertising to address unexpected terminal dropout. Simultaneously, we theoretically demonstrate our scheme’s security and have lower computation and communication costs. Experiments show that CESA can reduce the running time by 28.2% without sacrificing security and model accuracy compared to conventional secure aggregation when there are 10 terminals in the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.