Abstract

Background and ObjectivesCervical cancer affects around 0.5 million women per year, resulting in over 0.3 million fatalities. Therefore, repetitive screening for cervical cancer is of utmost importance. Computer-assisted diagnosis is key for scaling up cervical cancer screening. Current recognition algorithms, however, perform poorly on the whole-slide image (WSI) analysis, fail to generalize for different staining methods and on uneven distribution for subtype imaging, and provide sub-optimal clinical-level interpretations. Herein, we developed CervixFormer—an end-to-end, multi-scale swin transformer-based adversarial ensemble learning framework to assess pre-cancerous and cancer-specific cervical malignant lesions on WSIs. MethodsThe proposed framework consists of (1) a self-attention generative adversarial network (SAGAN) for generating synthetic images during patch-level training to address the class imbalanced problems; (2) a multi-scale transformer-based ensemble learning method for cell identification at various stages, including atypical squamous cells (ASC) and atypical squamous cells of undetermined significance (ASCUS), which have not been demonstrated in previous studies; and (3) a fusion model for concatenating ensemble-based results and producing final outcomes. ResultsIn the evaluation, the proposed method is first evaluated on a private dataset of 717 annotated samples from six classes, obtaining a high recall and precision of 0.940 and 0.934, respectively, in roughly 1.2 minutes. To further examine the generalizability of CervixFormer, we evaluated it on four independent, publicly available datasets, namely, the CRIC cervix, Mendeley LBC, SIPaKMeD Pap Smear, and Cervix93 Extended Depth of Field image datasets. CervixFormer obtained a fairly better performance on two-, three-, four-, and six-class classification of smear- and cell-level datasets. For clinical interpretation, we used GradCAM to visualize a coarse localization map, highlighting important regions in the WSI. Notably, CervixFormer extracts feature mostly from the cell nucleus and partially from the cytoplasm. ConclusionsIn comparison with the existing state-of-the-art benchmark methods, the CervixFormer outperforms them in terms of recall, accuracy, and computing time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call