Abstract

Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant dysplasia or invasive cervical cancer compared with that of healthy women. The study comprised 120 Ethiopian women (60 cervical cancer patients who had not received any treatment, 25 patients with premalignant dysplasia, and 35 healthy women). Cervicovaginal specimens were collected using either an Isohelix DNA buccal swab or an Evalyn brush, and ribosomal RNA sequencing was used to characterize the cervicovaginal microbiota. Shannon and Simpson diversity indices were used to evaluate alpha diversity. Beta diversity was examined using principal coordinate analysis of weighted UniFrac distances. Alpha diversity was significantly higher in patients with cervical cancer than in patients with dysplasia and in healthy women (p < 0.01). Beta diversity was also significantly different in cervical cancer patients compared with the other groups (weighted UniFrac Bray-Curtis, p < 0.01). Microbiota composition differed between the dysplasia and cervical cancer groups. Lactobacillus iners was particularly enriched in patients with cancer, and a high relative abundance of Lactobacillus species was identified in the dysplasia and healthy groups, whereas Porphyromonas, Prevotella, Bacteroides, and Anaerococcus species predominated in the cervical cancer group. In summary, we identified differences in cervicovaginal microbiota diversity, composition, and relative abundance between women with cervical cancer, women with dysplasia, and healthy women. Additional studies need to be carried out in Ethiopia and other regions to control for variation in sample collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.