Abstract
Magnetic resonance (MR) imaging of the cervical spine with axial, low flip angle three-dimensional (3D) gradient-echo sequences is limited by long acquisition times and also by increased sensitivity to extrinsic and intrinsic magnetic field inhomogeneity, magnetic susceptibility differences, chemical shifts, and cerebrospinal fluid pulsatility. We attempted to assess the performance of gadolinium-enhanced, magnetization transfer (MT) prepulsed 3D fast gradient-echo sequences in demonstrating spondylotic changes of the cervical spine. Twenty patients with known cervical spine spondylosis were prospectively imaged in the axial plane using two gradient-echo-based MR techniques: 3D fast field echo (FFE) and gadolinium-enhanced, MT prepulsed, segmented turbo field echo (TFE). An average of 58 neural foramina on the 3D FFE images and 47 neural foramina on the contrast-enhanced TFE images were judged to be narrowed. The degree of neural foraminal narrowing was significantly less on the contrast-enhanced TFE images compared with the FFE images (P <0.001). Contrast-enhanced, MT prepulsed, segmented 3D TFE MR imaging has potential for ameliorating some of the limitations encountered in the more widely used gradient-echo techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.