Abstract

Systems for classifying cervical spine injury most commonly use mechanistic or morphologic terms and do not quantify the degree of stability. Along with neurologic function, stability is a major determinant of treatment and prognosis. The goal of our study was to investigate the reliability of a method of quantifying the stability of subaxial (C3-C7) cervical spine injuries. A quantitative system was developed in which an analog score of 0 to 5 points is assigned, on the basis of fracture displacement and severity of ligamentous injury, to each of four spinal columns (anterior, posterior, right pillar, and left pillar). The total possible score thus ranges from 0 to 20 points. Fifteen examiners assigned scores after reviewing the plain radiographs and computed tomography images of thirty-four consecutive patients with cervical spine injuries. The scores were then evaluated for interobserver and intraobserver reliability with use of intraclass correlation coefficients. The mean intraobserver and interobserver intraclass correlation coefficients for the fifteen reviewers were 0.977 and 0.883, respectively. Association between the scores and clinical data was also excellent, as all patients who had a score of > or =7 points had surgery. Similarly, eleven of the fourteen patients with a score of > or =7 points had a neurologic deficit compared with only three of the twenty with a score of <7 points. The Cervical Spine Injury Severity Score had excellent intraobserver and interobserver reliability. We believe that quantifying stability on the basis of fracture morphology will allow surgeons to better characterize these injuries and ultimately lead to the development of treatment algorithms that can be tested in clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call