Abstract

Background: Klippel Feil syndrome (KFS) is a congenital malformation characterised by the presence of, at least, one fused cervical segment and results from faulty segmentation along the embryo’s developing axis during weeks 3 - 8 of gestation. The KFS increases the risk for spinal cord injury after minor trauma as a result of the disturbance of the biomechanics of the cervical spine. Persons with KFS often have associated congenital anomalies. Aim: The purpose of this study was to show the surgical management difficulties of this pathology in a low income country such as Senegal and to make a review of the literature. Case presentation: A 32-year-old man developed a tetraparesis secondary to a fall from his height while carrying a bag of rice on his head. Radiological explorations revealed fusedC2-C3 and C4-C5 vertebral bodies with a C3-C4 disc herniation associated to a spine contusion. The patient underwent surgical removal of the herniated disc via an anterior approach followed by interbody fusion and anterior plating. A complete recovery was noted at 4 months follow-up. Conclusion: Understanding of the cervical spine biomechanics of Klippel-Feil anomaly may allow an optimal management of patients. Patients with KFS should be warned of the increased risk of spinal cord injury after a low velocity trauma. Timing for surgery should be shortened.

Highlights

  • Klippel Feil syndrome (KFS) is a congenital malformation characterised by the presence of, at least, one fused cervical segment and results from faulty segmentation along the embryo’s developing axis during weeks 3 - 8 of gestation

  • The KFS increases the risk for spinal cord injury after minor trauma as a result of the disturbance of the biomechanics of the cervical spine

  • Understanding of the cervical spine biomechanics of Klippel-Feil anomaly may allow an optimal management of patients

Read more

Summary

Introduction

Klippel Feil syndrome (KFS) is a congenital malformation characterised by the presence of, at least, one fused cervical segment and results from faulty segmentation along the embryo’s developing axis during weeks 3 - 8 of gestation. Conclusion: Understanding of the cervical spine biomechanics of Klippel-Feil anomaly may allow an optimal management of patients. The major feature of KFS is congenital fusion of two or more cervical vertebrae This causes a biomechanical disturbance that increases the risk of developing neurological damage even in the event of minimal trauma to the cervical spine [10] [11]. We present a case of a post-traumatic tetraparesis in a 32-years-old patient with KFS treated surgically with an anterior cervical discectomy and fusion. The difficulties encountered during the management of this case are discussed

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call