Abstract
High-cervical spinal cord injury often disrupts respiratory motor pathways and disables breathing in the affected population. Moreover, cervically injured individuals are at risk for developing acute lung injury, which predicts substantial mortality rates. While the correlation between acute lung injury and spinal cord injury has been found in the clinical setting, the field lacks an animal model to interrogate the fundamental biology of this relationship. To begin to address this gap in knowledge, we performed an experimental cervical spinal cord injury (N = 18) alongside sham injury (N = 3) and naïve animals (N = 15) to assess lung injury in adult rats. We demonstrate that animals display some early signs of lung injury two weeks post-spinal cord injury. While no obvious histological signs of injury were observed, the spinal cord injured cohort displayed significant signs of metabolic dysregulation in multiple pathways that include amino acid metabolism, lipid metabolism, and N-linked glycosylation. Collectively, we establish for the first time a model of lung injury after spinal cord injury at an acute time point that can be used to monitor the progression of lung damage, as well as identify potential targets to ameliorate acute lung injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.