Abstract

Suzuki et al. showed that properly oriented, right-stable, orthogonal, and oriented conditional term rewrite systems with extra variables in right-hand sides are confluent. We present our Isabelle/HOL formalization of this result, including two generalizations. On the one hand, we relax proper orientedness and orthogonality to extended proper orientedness and almost orthogonality modulo infeasibility, as suggested by Suzuki et al. On the other hand, we further loosen the requirements of the latter, enabling more powerful methods for proving infeasibility of conditional critical pairs. Furthermore, we formalized a construction by Jacquemard that employs exact tree automata completion for non-reachability analysis and apply it to certify infeasibility of conditional critical pairs. Combining these two results and extending the conditional confluence checker ConCon accordingly, we are able to automatically prove and certify confluence of an important class of conditional term rewrite systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.