Abstract

Reinforcement Learning (RL) is a widely employed machine learning architecture that has been applied to a variety of control problems. However, applications in safety-critical domains require a systematic and formal approach to specifying requirements as tasks or goals. We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs). The given LTL property is translated into a Limit-Deterministic Generalised Büchi Automaton (LDGBA), which is then used to shape a synchronous reward function on-the-fly. Under certain assumptions, the algorithm is guaranteed to synthesise a control policy whose traces satisfy the LTL specification with maximal probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call