Abstract

In this paper, we propose, analyze, and implement a new reduced basis method (RBM) tailored for the linear (ordinary and partial) differential equations driven by arbitrary (i.e. not necessarily Gaussian) types of noise. There are four main ingredients of our algorithm. First, we propose a new space-time-like treatment of time in the numerical schemes for ODEs and PDEs. The second ingredient is an accurate yet efficient compression technique for the spatial component of the space-time snapshots that the RBM is adopting as bases. The third ingredient is a non-conventional “parameterization” of a non-parametric problem. The last is a RBM that is free of any dedicated offline procedure yet is still efficient online. The numerical experiments verify the effectiveness and robustness of our algorithms for both types of differential equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call