Abstract

User access control is a crucial requirement in any Internet of Things (IoT) deployment, as it allows one to provide authorization, authentication, and revocation of a registered legitimate user to access real-time information and/or service directly from the IoT devices. To complement the existing literature, we design a new three-factor certificateless-signcryption-based user access control for the IoT environment (CSUAC-IoT). Specifically, in our scheme, a user $U$ ’s password, personal biometrics, and mobile device are used as the three authentication factors. By executing the login and access control phase of CSUAC-IoT, a registered user $(U)$ and a designated smart device $(S_{i})$ can authorize and authenticate mutually via the trusted gateway node (GN) in a particular cell of the IoT environment. In our setting, the environment is partitioned into disjoint cells, and each cell will contain a certain number of IoT devices along with a GN. With the established session key between $U$ and $S_{i}$ , both entities can then communicate securely. In addition, CSUAC-IoT supports new IoT devices deployment, user revocation, and password/biometric update functionality features. We prove the security of CSUAC-IoT under the real-or-random (ROR) model, and demonstrate that it can resist several common attacks found in a typical IoT environment using the AVISPA tool. A comparative analysis also reveals that CSUAC-IoT achieves better tradeoff for security and functionality, and computational and communication costs, in comparison to five other competing approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call