Abstract

Certificateless public-key systems (CL-PKS) were introduced to simultaneously solve two critical problems in public-key systems. One is the key escrow problem in ID-based public-key systems and the other is to eliminate the presence of certificates in conventional public-key systems. In the last decade, several certificateless signature (CLS) schemes have been proposed in the ran- dom oracle model. These CLS schemes possess existential unforgeability against adaptive chosen- message attacks, and only few of them possess strong unforgeability. A CLS scheme with strong unforgeability plays an important role in the construction of certificateless cryptographic schemes. Unfortunately, all the existing CLS schemes in the standard model (without random oracles) have been shown insecure to provide existential unforgeability under a generally adopted security model. In the article, we propose a strongly secure CLS scheme in the standard model under the generally adopted security model. Our scheme possesses not only existential unforgeability but also strong unforgeability, and turns out to be the first strongly secure CLS scheme in the standard model. Un- der the collision resistant hash (CRH) and computational Diffie-Hellman (CDH) assumptions, we prove that our CLS scheme possesses strong unforgeability against both Type I (outsiders) and Type II (key generation center) adversaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.