Abstract

This paper presents experimental results on solutocapillary Marangoni convection, an effect that occurs in a thin horizontal layer of the inhomogeneous solution of a surface-tension-active agent (surfactant) either near the free upper boundary of the layer or near the surface of an air bubble injected into the fluid. A procedure using interferometry is developed for simultaneously visualizing convective flow structures and concentration fields. A number of new phenomena are observed, including the deformation and rupture of the liquid layer due to a surfactant droplet spread over its surface; bubble self-motion (migration) toward higher surfactant concentrations; self-sustained convective flow oscillations around stationary bubbles in a fluid vertically stratified in concentration; and the existence of a threshold for a solutal Marangoni flow in thin layers. A comparison of solutocapillary and thermo-capillary phenomena is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.