Abstract

Chen (1999) established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemanian space form with arbitrary codimension. Matsumoto (to appear) dealt with similar problems for sub-manifolds in complex space forms.In this article we obtain sharp relationships between the Ricci curvature and the squared mean curvature for submanifolds in (K, μ)-contact space forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.