Abstract

The authors first present a class of expansions in a series of Bernoulli polyomials and then show how this general result can be applied to yield various (known or new) polynomial expansions. The corresponding expansion problem involving the Euler polynomials is then considered in an analogous manner. Several general multiplication formulas, involving (for example) certain families of generalized hypergeometric polynomials, are also investigated in the context especially of the classical Jacobi, Laguerre, and other related orthogonal polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.