Abstract
Lipid metabolism disorders and mitochondrial dysfunction contribute to the progression of diabetes and chronic liver disease (CLD). Ferroptosis, as a form of cell death centered on reactive oxygen species (ROS) accumulation and lipid peroxidation, is closely related to mitochondrial dysfunction. However, whether there exists mechanistic links between these processes remains unknown. Here, to explore the molecular mechanism of diabetes complicated with CLD, we showed that high glucose could restrain the activity of antioxidant enzymes, promote mitochondrial ROS (mtROS) production, and induce a state of oxidative stress in the mitochondria of human normal liver (LO2) cells. We demonstrated that high glucose induced ferroptosis and promoted the development of CLD, which was reversed by the ferroptosis inhibitor Ferrostatin-1 (Fer-1). In addition, the mitochondria-targeting antioxidant Mito-TEMPO was used to intervene LO2 cells in high-glucose culture, and ferroptosis was found to be inhibited, whereas markers of liver injury and fibrosis improved. Furthermore, high glucose could promote ceramide synthetase 6 (CerS6) synthesis through the TLR4/IKKβ pathway. The knockout of CerS6 in LO2 cells showed that mitochondrial oxidative stress was attenuated, ferroptosis was inhibited, and markers of liver injury and fibrosis were ameliorated. In contrast, the overexpression of CerS6 in LO2 cells showed the opposite changes and these changes were inhibited by Mito-TEMPO. In short, we positioned the study of lipid metabolism to a specific enzyme CerS6, with a high degree of specificity. Our findings revealed the mechanism by which the mitochondria act as a bridge linking CerS6 and ferroptosis, confirming that under high glucose conditions, CerS6 promotes ferroptosis through mitochondrial oxidative stress, eventually leading to CLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.