Abstract

Wireless sensor networks (WSNs), constrained by limited resources, demand routing strategies that prioritize energy efficiency. The tactic of cooperative routing, which leverages the broadcast nature of wireless channels, has garnered attention for its capability to amplify routing efficacy. This manuscript introduces a power-conscious routing approach, tailored for resource-restricted WSNs. By exploiting cooperative communications, we introduce an innovative relay node selection technique within clustered networks, aiming to curtail energy usage while safeguarding data dependability. This inventive methodology has been amalgamated into the Routing Protocol for Low-Power and Lossy Networks (RPL), giving rise to the cooperative and efficient routing protocol (CERP). The devised CERP protocol pinpoints and selects the most efficacious relay node, ensuring that packet transmission is both energy-minimal and reliable. Performance evaluations were executed to substantiate the proposed strategy, and its practicality was examined using an Arduino-based sensor node and the Contiki operating system in real-world scenarios. The outcomes affirm the efficacy of the proposed strategy, outshining the standard RPL concerning reliability and energy conservation, enhancing RPL reliability by 10% and energy savings by 18%. This paper is posited to contribute to the evolution of power-conscious routing strategies for WSNs, crucial for prolonging sensor node battery longevity while sustaining dependable communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.