Abstract

AbstractRecently, lanthanide‐based 0D metal halides have garnered considerable attention owing to their applications in light–emitting diodes (LEDs), X‐ray imaging, and photodetectors. Among these materials, 0D Cs3TbCl6 (CTC) nanocrystals (NCs) have demonstrated promising performance in X‐ray imaging and light‐emitting diodes. However, a considerable drawback of CTC NCs is their limited absorption coefficient in the UV‐A region (315–380 nm). To address this limitation and enhance the absorption coefficient in the UV‐A region, Ce3+ is incorporated into CTC NCs—advantageous owing to the high absorption coefficient of Ce3+ in the UV‐A region, attributed to—4f‐5d orbital coupling. In addition, Ce3+ ions sensitize the luminescence of CTC NCs and enhance the photoluminescence quantum yield from 75% to 87%. Energy transfer from Ce3+ to Tb3+ is investigated at different dopant ratios. Furthermore, Cs3CeTbCl6 (CCTC) NCs have been utilized in white LED devices. Understanding such competitive energy transfer in lanthanide‐based perovskite‐inspired metal halides will facilitate the development of novel luminescent metal halides for lighting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call