Abstract

The activation and catalytic conversion of CO2 is a current topic relating to molecular chemistry and materials science alike. As a transdisciplinary field of research, surface organometallic chemistry (SOMC) might be applicable to perform synergistically, thus striking a new path in sustainable chemistry. Both ceric and cerous rare-earth-metal pyrazolates, which were recently shown to reversibly insert CO2 and to promote the catalytic cycloaddition of epoxides and carbon dioxide, were grafted onto large-pore mesoporous silica SBA-15500, thermally pretreated at 500 °C. The obtained hybrid materials [Ce(Me2pz)4]2@SBA-15500, Ce(Me2pz)4(thf)@SBA-15500, Ce4(Me2pz)12@SBA-15500, and [Ce(Me2pz)3(thf)]2@SBA-15500 (Me2pz = 3,5-dimethylpyrazolato) were characterized by DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy), solid-state 1H/13C NMR spectroscopy, elemental analysis, ICP/OES, and N2 physisorption. The lanthanum(III)-based material [La(Me2pz)3(thf)]2@SBA-15500 was synthesized for better assessment of the cerous materials being highly sensitive to oxidation. To mimic ceric surface species, Ce[OSi(OtBu)3]3Cl was treated with 1 equiv of K(Me2pz), generating the mixed pyrazolyl/siloxy complex KCe[OSi(OtBu)3]4(Me2pz) featuring a cerium(IV)-bonded terminal pyrazolato ligand. All hybrid materials show efficient and reversible carbon dioxide uptake of maximum 20 wt % in the solid state. When combined with tetra-n-butylammonium bromide (TBAB), the hybrid materials catalyze the cycloaddition of CO2 and epoxides, displaying good conversion of various epoxides and reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call