Abstract
The present study investigated whether supplementation with different doses of cerium dioxide nanoparticles (CeO2 NPs) during in vitro maturation (IVM) of prepubertal ovine oocytes influenced their embryonic development in vitro. Cumulus-oocyte complexes derived from the ovaries of slaughtered prepubertal sheep underwent IVM with CeO2NPs (0, 44, 88 or 220µg mL-1). Matured oocytes were fertilised in vitro and zygotes were cultured for 7 days. The results demonstrated that CeO2NPs were internalised in the cumulus cells and not in the oocyte. The treatment with CeO2NPs did not affect nuclear maturation or intracellular levels of reactive oxygen species of the oocytes. The percentage of oocytes with regular chromatin configuration and cytoskeleton structures when treated with 44µg mL-1 CeO2NPs was similar to oocytes matured in the absence of CeO2NPs and significantly higher than those treated with 88 or 220µg mL-1 CeO2NPs. The relative quantification of transcripts in the cumulus cells of oocytes matured with 44µg mL-1 CeO2NPs showed a statistically lower mRNA abundance of BCL2-associated X protein (BAX), B-cell CLL/lymphoma 2 (BCL2) and superoxide dismutase 1 (SOD1) compared with the 0µg mL-1 CeO2 NPs group. A concentration of 44µg mL-1 CeO2NPs significantly increased the blastocyst yield and their total, inner cell mass and trophectoderm cell numbers, compared with the 0 and 220µg mL-1 groups. A low concentration of CeO2NPs in the maturation medium enhanced in vitro embryo production of prepubertal ovine oocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.