Abstract
Neuropathic pain originating from a dysfunction in the nervous system is often intractable and chronic. Recently, several studies using nanoparticles suggested a new way to control neuropathic pain. This study intended to explore the potential neuroprotective effect of Cerium Oxide Nanoparticles (CNPs) synthesized by pullulan in neuropathic pain in rats. On the right common sciatic nerve of male Wistar rats, the chronic constriction injury (CCI) procedure was used to establish a neuropathic pain model. CNPs were injected into the caudal vein of the rat. Behavioral methods were used to detect mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats. Besides, inflammation factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and markers of oxidative stress, including Malondialdehyde (MDA) and total thiol, were measured in the spinal cord segment of rats. In rats with CCI, mechanical allodynia, cold allodynia, and thermal hyperalgesia developed, which improved when the rats were administered CNPs. Spinal cord specimens of CCI rats had elevated inflammation and oxidative stress status (↑IL-1β, ↑TNF-α, ↑NO, ↑MDA) and decreased antioxidative levels (↓total thiol). As a result of CNPs treatment, these changes were reversed in the spinal cord specimens. CNPs alleviate neuropathic pain by exhibiting antioxidative and anti-inflammatory activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.