Abstract

Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol–gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call