Abstract

ABSTRACTRecently, renewed interest has emerged for the development of visible light, down-converting phosphors for application in white light emitting diodes (LEDs). In such devices, a blue GaN LED can act as a primary light source, serving as an efficient pump to excite photoluminescence in a phosphor with subsequent emission occurring at lower energies. The combination of blue light from the LED chip and emission from the phosphor(s) produces white light. It was recently reported that a combinatorial approach to synthesize and screen potential inorganic phosphors for use in white LEDs could aid in identifying improved phosphors for blue to yellow down conversion. Solid state thin-film arrays (libraries) based on the garnet structure (A1−x,Bx)3−z(C1−y,Dy)5O12:Ce3+z, where A, B = Y, Gd, Lu, La; C., D = Al, Ga; x and y = 0 to 1.0; and z = 0.03, were synthesized, and x-ray diffraction was used to select library samples of the crystalline garnet phase. Libraries of these various garnets were then characterized spectroscopically and their properties compared to traditionally prepared bulk powder phosphors of similar composition. Emission and excitation trends show that as larger cations are substituted for Y (A = Y), emission and excitation are red-shifted and as larger cations are substituted for Al (C = Al), emission and excitation are blue-shifted. If smaller cations are substituted for Y and Al an opposite trend is observed. Temperature dependence photoluminescence measurements and emission/excitation trends are also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call