Abstract

In this work, porous anodic oxides were produced by traditional and modified tartaric sulfuric anodizing (TSA) processes and sealed in hot water, chromate and cerium based solutions. The sealing behavior of a film with relatively coarse porosity, generated at high voltage (traditional TSA), was compared to the sealing behavior of a film with finer porosity and generated at reduced potential (modified TSA). After sodium chromate sealing, the two anodizing cycles produced film with similar anticorrosion performance. Conversely, after hot water or cerium sealing, the finer oxides generated at low voltage (modified TSA) provided much better corrosion resistance. EIS performed in-situ during sealing revealed that chromate sealing is very aggressive to the porous skeleton compared to the other sealing treatments. Therefore, the original morphology has little effect on the final performance, since both fine and coarse oxides are substantially attacked. In contrast, the oxide morphology has a substantial effect when sealing is performed in hot water or cerium-based solution. Overall, it is possible to obtain films with anticorrosion performance equivalent or improved compared to that obtained by traditional TSA anodizing cycle sealed with chromate by combining the low voltage anodizing cycle with the cerium-based sealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.