Abstract

The construction of multi-modal detection methods has attracted widespread attention in the field of biosensing due to their high sensitivity and strong anti-interference ability. In this manuscript, we developed colorimetric and ratiometric fluorescence dual-signal optical methods based on cerium-based nanoparticles (Ce NPs) for the sensitive detection of vitamin C (VC). The catalysis of Ce NPs with excellent peroxidase-like activity upon the reaction of H2O2 with OPD was occurred, promoting the oxidation of o-phenylenediamine (OPD) to generate 2,3-diaminophennazine (OPDox) with an obvious absorption peak at 420 nm and an emission peak at 565 nm. In the presence of VC, VC not only inhibited the generation of OPDox, but also induced the formation of quinoxaline with an obvious absorption peak at 336 nm and an emission peak at 430 nm. This can be visually observed and monitored by measuring the absorbance of peak at 336 nm (A336) and the ratiometric fluorescence intensity (F430/F565). Therefore, the dual-signal methods are constructed for the detection of VC. The detection lower detection limits are 8.0 μM and 8.4 μM when using the fluorescence and colorimetric signals, respectively. Furthermore, the proposed methods are successfully applied to the detection of VC in practical samples with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call