Abstract

Circular RNAs, a family of covalently circularized RNAs with tissue-specific expression, were recently demonstrated to play important roles in mammalian biology. Regardless of extensive research to predict, quantify, and annotate circRNAs, our understanding of their functions is still in its infancy. In this study, we developed a novel computational tool: Competing Endogenous RNA for INtegrative Annotations (Cerina), to predict biological functions of circRNAs based on the competing endogenous RNA model. Pareto Frontier Analysis was employed to integrate ENCODE mRNA/miRNA data with predicted microRNA response elements to prioritize tissue-specific ceRNA interactions. Using data from several circRNA-disease databases, we demonstrated that Cerina significantly improved the functional relevance of the prioritized ceRNA interactions by several folds, in terms of precision and recall. Proof-of-concept studies on human cancers and cardiovascular diseases further showcased the efficacy of Cerina on predicting potential circRNA functions in human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.