Abstract

A series of CexPr1−xO2−δ catalysts was prepared by co-precipitation method in alkali media. These catalysts were characterized by N2 adsorption–desorption isotherms at −196 °C, X-ray diffraction, thermogravimetry combined with mass spectrometry (TG-MS), and temperature-programmed reduction with H2 and CO (H2-TPR and CO-TPR, respectively). Catalytic tests were performed for temperature programmed NO oxidation to NO2 (from 25 to 750 °C) and for the preferential oxidation of CO in H2 rich stream (CO-PROX reaction) in the range of 150–500 °C. The trends in the order of catalytic activities towards NO oxidation and CO-PROX are correlated with the redox properties of the catalysts and their composition. CexPr1−xO2−δ mixed oxides present very different catalytic behaviours towards NO oxidation and CO-PROX reactions. These experimental trends might be explained by the balance of several factors: the acid character of the NO and CO molecules, the different lattice oxygen mobility of the catalysts, the presence of surface carbonates species in the samples, and the catalysts’ reducibility under H2 and CO. The understanding of the features that govern the activity towards these environmentally relevant oxidation reactions is important in the designing of effective catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.