Abstract

This study reports a novel two-step approach to fabricate Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/cerium oxide (CeO2) nanocomposite fibrous membranes. The fabrication method is based on the combination of the electrospinning of the polymer/cerium salt solution and the subsequent in situ thermally activated conversion of the salt in CeO2 nanoparticles, directly in the polymeric fibers. This procedure leads to a homogeneous filler dispersion not only in the bulk of the polymeric fibers, but also on their surface, thus conferring to the system remarkable properties, such as radical scavenging and photo-catalytic activity. These properties are further improved by the decoration of the CeO2 with gold nanoparticles, formed upon the dipping of the solid PVDF-HFP/CeO2 fibers in a gold precursor solution and their subsequent thermal treatment, thanks to the modification of the Ce+3/Ce+4 ratio and the absorption spectrum shifted towards visible wavelengths. Specifically, the presence of Au on th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.