Abstract

Ni-ceria nanoparticles (Ni/Ce = 1/1) in the cage-like pores of SBA-16 were prepared and evaluated in methane dry reforming reactions. Coexistence of ceria in NiCe/SBA-16 resulted in forming uniformly sized Ni particles (av. 5.7 nm) within the mesopores of SBA-16, because of the confinement effect from the framework of SBA-16 and the strong interaction between Ni and ceria. Ceria addition facilitated the reduction of NiCe/SBA-16 compared with Ni/SBA-16, and Ce3+ was the dominant species in both fresh and used NiCe/SBA-16 catalysts, as determined by Ce LIII-edge X-ray absorption near-edge structure (XANES). The methane conversion was much more stable on NiCe/SBA-16 than on Ni/CeO2 and Ni/SBA-16 in the methane dry reforming at 973 K during a 100 h reaction period; the deactivation of the Ni catalyst and the collapse of the SBA-16 framework were preferably suppressed for NiCe/SBA-16 under the reaction conditions. The remarkable effect of ceria on the structural stability of both the active Ni particles and th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call