Abstract

Cereulide-producing members of Bacillus cereussensu lato group III (also known as emetic B. cereus) possess cereulide synthetase, a plasmid-encoded, nonribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by emetic B. cereus has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize group III B. cereussensu lato genomes which possess ces (ces positive) alongside their closely related, ces-negative counterparts (i) to assess the genomic diversity encompassed by emetic B. cereus and (ii) to identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive group III B. cereussensu lato genomes and the ces-negative genomes interspersed among them (n = 159), we show that emetic B. cereus is not clonal; rather, multiple lineages within group III harbor cereulide-producing strains, all of which share an ancestor incapable of producing cereulide (posterior probability = 0.86 to 0.89). Members of ST 26 share an ancestor that existed circa 1748 (95% highest posterior density [HPD] interval = 1246.89 to 1915.64) and first acquired the ability to produce cereulide before 1876 (95% HPD = 1641.43 to 1946.70). Within ST 26 alone, two subsequent ces gain events were observed, as well as three ces loss events, including among isolates responsible for B. cereussensu lato toxicoinfection (i.e., "diarrheal" illness).IMPORTANCEB. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Here, we show that emetic B. cereus is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some group III B. cereussensu lato populations to oscillate between diarrheal and emetic foodborne pathogens over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereussensu lato outbreaks, since some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.

Highlights

  • IMPORTANCE B. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide or (ii) toxicoinfection via multiple enterotoxins

  • Cereulide-producing group III B. cereus sensu lato strains are distributed across multiple lineages and share an ancestor incapable of synthesizing cereulide

  • Cereulide-producing B. cereus sensu lato strains are estimated to be responsible for thousands of cases of foodborne illness each year worldwide [2], including rare but severe forms of illness which may result in death [27,28,29,30,31]

Read more

Summary

Introduction

IMPORTANCE B. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Foodborne B. cereus intoxication (i.e., “emetic” illness) is caused by cereulide, a highly heat- and pH-stable toxin, which is preformed in food prior to consumption These intoxications have a relatively short incubation period (typically 0.5 to 6 h) and are often accompanied by symptoms of vomiting and nausea [1, 3,4,5]. We employ phylogenomic approaches to characterize group III B. cereus sensu lato genomes that possess ces (ces positive) alongside their closely related ces-negative counterparts (i) to assess the genomic diversity encompassed by cereulide-producing group III strains (i.e., emetic B. cereus) and (ii) to identify potential ces loss and/or gain events within the emetic B. cereus evolutionary history

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.