Abstract

Cloud properties were retrieved by applying the Clouds and Earth's Radiant Energy System (CERES) project Edition-2 algorithms to 3.5 years of Tropical Rainfall Measuring Mission Visible and Infrared Scanner data and 5.5 and 8 years of MODerate Resolution Imaging Spectroradiometer (MODIS) data from Aqua and Terra, respectively. The cloud products are consistent quantitatively from all three imagers; the greatest discrepancies occur over ice-covered surfaces. The retrieved cloud cover (~59%) is divided equally between liquid and ice clouds. Global mean cloud effective heights, optical depth, effective particle sizes, and water paths are 2.5 km, 9.9, 12.9 μm , and 80 g·m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> , respectively, for liquid clouds and 8.3 km, 12.7, 52.2 μm, and 230 g·m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> for ice clouds. Cloud droplet effective radius is greater over ocean than land and has a pronounced seasonal cycle over southern oceans. Comparisons with independent measurements from surface sites, the Ice Cloud and Land Elevation Satellite, and the Aqua Advanced Microwave Scanning Radiometer-Earth Observing System are used to evaluate the results. The mean CERES and MODIS Atmosphere Science Team cloud properties have many similarities but exhibit large discrepancies in certain parameters due to differences in the algorithms and the number of unretrieved cloud pixels. Problem areas in the CERES algorithms are identified and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call