Abstract

The physics and technology of this new Cerenkov detector are discussed, including materials studies, construction techniques, and resolution measurements. Sources of resolution error are individually identified and measured where possible. The results of all studied indicate that the measurement resolution is understood. This work has led to the adoption of a large scale ring imaging detector as part of a new high energy physics spectrometer, the SLD, at the Stanford Linear Accelerator Center. Results from an amplitude analysis of strange meson final states in K/sup /minus//p ..-->.. /ovr K/sub 0//..pi../sup /minus//p interactions are presented. The data derive from a 4 event/nb exposure of the LASS (large Aperture Superconducting Solenoid) spectrometer to an 11 GeV/c K/sup /minus// beam. The data sample consists of /approximately/100,000 vents distributed over the Dalitz plot of the channel. The process is observed to be dominated by the production and decay of natural spin-parity (J/sup P/ = 1/sup /minus//,2/sup +/,3/sup /minus//,/hor ellipsis/) strange meson states. The data can be understood in terms of a simple model in which the resonant /ovr K*/sup -// are produced predominantly via natural parity exchange in the t channel. The leading K*(890), K/sub 2/*(1430), and K*(1780) resonances are clearly observed and measured, and the underlying spectroscopy is also extracted. Indications of higher mass resonance production are also shown. The observed properties of these states are used to confront current models of quark spectroscopy in strange meson systems. 94 refs., 96 figs., 23 tabs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.