Abstract

BackgroundPreclinical and clinical studies have demonstrated that immunotherapy has effectively delayed tumor progression, and the clinical outcomes of anti-PD-1/PD-L1 therapy were related to PD-L1 expression level in the tumors. A 131I-labeled anti-PD-L1 monoclonal antibody tracer, 131I-PD-L1-Mab, was developed to study the target ability of noninvasive Cerenkov luminescence imaging in colorectal cancer xenograft mice.MethodAnti-PD-L1 monoclonal antibody labeled with 131I (131I-PD-L1-Mab), and in vitro binding assays were used to evaluate the affinity of 131I-PD-L1-Mab to PD-L1 and their binding level to different colorectal cancer cells, and compared with flow cytometry, Western blot analysis, and immunofluorescence staining. The clinical application value of 131I-PD-L1-Mab was evaluated through biodistribution and Cerenkov luminescence imaging, and different tumor-bearing models expressing PD-L1 were evaluated.Results131I-PD-L1-Mab showed high affinity to PD-L1, and the equilibrium dissociation constant was 1.069 × 10-9 M. The competitive inhibition assay further confirmed the specific binding ability of 131I-PD-L1-Mab. In four different tumor-bearing models with different PD-L1 expression, the biodistribution and Cerenkov luminescence imaging showed that the RKO tumors demonstrated the highest uptake of the tracer 131I-PD-L1-Mab, with a maximum uptake of 1.613 ± 0.738% IA/g at 48 h.ConclusionsThere is a great potential for 131I-PD-L1-Mab noninvasive Cerenkov luminescence imaging to assess the status of tumor PD-L1 expression and select patients for anti-PD-L1 targeted therapy.

Highlights

  • Preclinical and clinical studies have demonstrated that immunotherapy has effectively delayed tumor progression, and the clinical outcomes of anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) therapy were related to PD-L1 expression level in the tumors

  • The polyvinylidene fluoride (PVDF) membranes were blocked with phosphate buffered saline with Tween® 20 (PBST) containing 5% BSA for 1 h followed by incubation overnight at 4 °C with anti-PDL1 antibody (#ab205921, Abcam, Tokyo, Japan) at 1/200 dilution and anti-β-actin (Proteintech, Wuhan, China) at 1/5000 dilution

  • Different Colorectal cancer (CRC) cell lines have various levels of PD-L1 expression To determine the expression of PD-L1 protein in four human CRC cell lines (LoVo, LS174T, SW620, and RKO) in vitro, Western blotting, flow cytometry, and immunofluorescence staining were conducted

Read more

Summary

Introduction

Preclinical and clinical studies have demonstrated that immunotherapy has effectively delayed tumor progression, and the clinical outcomes of anti-PD-1/PD-L1 therapy were related to PD-L1 expression level in the tumors. A 131I-labeled anti-PD-L1 monoclonal antibody tracer, 131I-PD-L1-Mab, was developed to study the target ability of noninvasive Cerenkov luminescence imaging in colorectal cancer xenograft mice. The competitive inhibition assay further confirmed the specific binding ability of 131I-PD-L1-Mab. In four different tumor-bearing models with different PD-L1 expression, the biodistribution and Cerenkov luminescence imaging showed that the RKO tumors demonstrated the highest uptake of the tracer 131I-PD-L1-Mab, with a maximum uptake of 1.613 ± 0.738% IA/g at 48 h. Conclusions: There is a great potential for 131I-PD-L1-Mab noninvasive Cerenkov luminescence imaging to assess the status of tumor PD-L1 expression and select patients for anti-PD-L1 targeted therapy. The anti-PD-1/PD-L1 therapies demonstrate better response in patients, and this is related to tumor PD-L1 expression level in vivo [13]. Molecular imaging with radiolabeled anti-PD-L1 antibodies comprehensively and dynamically assesses tumor PD-L1 expression in vivo, and monitors the possible changes in tumor PD-L1 expression during treatment

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call